22320

23242 3 Hours / 70 Marks

Seat No.

Instructions – (1) All Questions are Compulsory.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
- (7) Preferably, write the answers in sequential order.

Marks

1. Attempt any <u>FIVE</u> of the following:

10

- a) List the uses of following codes:
 - i) BCD code
 - ii) ASCII
- b) Write the one application of SR-FF and mention its one drawback.
- c) State the advantages of using tri state logic in combinational logic.
- d) Draw excitation table of T FF.
- e) List any two specifications of IC 0809.
- f) Define: Encoder
- g) Name four types of shift register.

22320 [2]

			Marks
2.		Attempt any THREE of the following:	12
	a)	Perform the following subtractions using 2'S compliment method.	
		i) (1100) - (0011)	
		ii) (10101) - (11100)	
	b)	Draw the MUX tree for 32:1 MUX using 4:1 MUX only.	
	c)	Name the basic building block used in CPLD and state their functions.	•
	d)	Minimize the following expression using K-map:	
		$f(A, B, C, D) = \sum m(2, 3, 6, 10, 11, 12, 14, 15)$	
3.		Attempt any THREE of the following:	12
	a)	Compare TTL and CMOS logic on the basis of :	
		i) Noise margin	
		ii) Figure of merit	
		iii) Speed of operation	
		iv) Fan in	
	b)	Realize the following logic operations using only NOR gates	
		i) OR	
		ii) EX-NOR	
	c)	Design the IC7490 as mod-B counter and describe its operation.	
	d)	Calculate the analog output of 8-Bit DAC for digital input 10011100. Assume $V_{\text{full scale}} = 5V$.	

22320 [3]

		T	Tarks
4.		Attempt any THREE of the following:	12
	a)	Draw the symbol, truth table and logical expression of following gates:	
		i) EX-OR gate	
		ii) NAND gate	
	b)	Draw the full adder circuit's logic diagram, truth table and K-map simplification.	
	c)	Draw the binary to gray code converter with the help of truth table and its K-map simplification.	
	d)	Describe the working of clocked SR flip-flop with preset and clear.	
	e)	Describe the working principle of dual slope type of ADC with neat diagram.	
5.		Attempt any TWO of the following:	12
	a)	Design 4-bit ripple counter and draw output waveforms.	
	b)	Compare weighted resister DAC with R-2R ladder type DAC (any six points).	
	c)	Convert the following	
		i) $(ABCD)_{16} = (?)_{10}$	
		ii) $(101011001111)_2 = (?)_{10}$	
		iii) $(101011001111)_2 = (?)_8$	
6.		Attempt any TWO of the following:	12
	a)	Draw universal shift register and describe its operation.	
	b)	Draw the 4-Bit adder, circuit using IC7483 and describe its working with suitable examples.	
	c)	Draw the circuit diagram of 3-input TTL NAND gate and explain its working.	